All-solid-state Li-ion batteries are attracting considerable attention as possible alternatives to conventional liquid electrolyte-based devices as they present a viable opportunity for increased energy density and safety. In recent years, a number of candidate materials have been explored as possible solid electrolytes, including garnets, Li-stuffed garnets, Li-rich anti-perovskites (LiRAPs),...
Metal-organic frameworks (MOFs) are porous crystalline materials with promising applications in molecular adsorption, separation, and catalysis. It has been discovered recently that structural defects introduced unintentionally or by design could have a significant impact on their properties. However, the exact chemical composition and structural evolution under different conditions at the...
Framework flexibility (elasticity), i.e., the ability of a metal-organic framework (MOF) to considerably change its structure as a function of relevant parameters like pressure, temperature, and type of adsorbed molecules is only observed for some special compounds. The MOF compound Ni2(2,6-ndc)2(dabco) [2,6-ndc: 2,6-naphthalenedicarboxylate, dabco:...
Structure-property relations are essential for designing materials. As many properties are governed by defects and disorder, respectively, elucidating structural details on various length scales is a cornerstone for material science and solid-state chemistry. This lecture will give an overview of our recent progress on using solid-state NMR spectroscopic techniques for studying defects and...
Detection of metallic Dirac electron states on the surface of topological insulators${^1}$ is, to date, restricted to a small number of experimental techniques, such as angle resolved photoemission spectroscopy and scanning tunneling microscopy. The encroachment of the Dirac states into the bulk interior of a topological insulator is yet to be illuminated experimentally. Getting insight, is...
The molecular diffusion of ions in energy storage devices, such as, e.g., supercapacitors, is the process enabling their charging and discharging ability. Chmiola et al. demonstrated the strong impact of micropores on the increase of specific capacitance using a series of titanium carbide-derived carbons exhibiting different but precisely uniform pore sizes [1]. An anomalous increase in...
The layered oxide LiNi$_{0.8}$Mn$_{0.1}$Co$_{0.1}$O$_2$ (NMC811) is a promising future cathode material for lithium-ion batteries in electric vehicles due to its high specific energy density. The practical use of NMC811 cathodes, however, faces difficulties as they suffer from fast capacity fade. Mitigating this performance fade requires detailed knowledge of the changes of structure and...
Dynamic Nuclear Polarization (DNP) is one of the promising approaches to overcome the sensitivity limitations of solid-state NMR, and has recently emerged as a powerful technique to amplify the NMR signals of surface species.1 We have recently demonstrated that the three-dimensional (3D) structure of a model organometallic platinum complex anchored on an amorphous silica can be...