Sensitivity of magic-angle spinning (MAS) solid-state NMR has been dramatically improved by the advent of high-field dynamic nuclear polarization (DNP) techniques through numerous discussions and breakthroughs made for improving the signal enhancement factor. Beyond the discussions on the sensitivity gain, we here propose two new methods to pursuit hitherto under-explored curiosity: a method...
Dissolution Dynamic Nuclear Polarisation (DNP) has shown great potential in providing large signal enhancement to metabolites of interest in low gamma metabolic magnetic resonance imaging. Originally DNP polarisers were based on pumped-helium cryostats, which provide a high cooling power to contain the extra heat load introduced during the dissolution. However, these systems are not efficient...
Among the hyperpolarization (HP) techniques, parahydrogen-based methods are the simplest and technically least demanding. Because such techniques (PHIP, SABRE) rely heavily on catalysis, some of the unsolved problems in both fields are rather similar. One major trend in modern catalysis is a broad search for approaches to combine advantages of homogeneous and heterogeneous catalysts, namely...
Longitudinal (T1) relaxation is usually considered as disadvantageous for MRI with hyperpolarized (hp) spin systems as it leads to depolarization and hence to a loss in the observable signal. However, it has been demonstrated previously that quadrupolar T1 relaxation of the hyperpolarized noble gas isotope 83Kr (nuclear spin I = 9/2) can utilized to probe...
Hyperpolarization via dissolution Dynamic Nuclear Polarization (dDNP) is without doubt the most widespread technique to overcome the low sensitivity in the liquid state Magnetic Resonance.1 Hyperpolarized water is a versatile tool with possible applications ranging from biomedicine to chemistry. For instance, it can be used to acquire high resolution angiographic and perfusion...
Many limitations of state-of-the-art drug screening by nuclear magnetic resonance (NMR) can be overcome by means of high-throughput hyperpolarization. There is an urgent need for innovative experimental screening techniques to identify new drugs as the resistance of « superbugs » against known drugs, e.g., against mycobacterium tuberculosis and other pathogens. Screening techniques must be...
Electron and nuclear spins in diamond have long coherence and relaxation times at room temperature, making them a promising platform for applications such as biomedical and molecular imaging and nanoscale magnetic field sensing. While the optically-active nitrogen-vacancy (NV) defect has received a great deal of attention, the substitutional nitrogen (or P1) center also exhibits long...
Hyperpolarized water produced by dissolution dynamic nuclear polarization (dDNP) has recently been shown to enable the detection of hyperpolarized spectra of proteins with up to 300-fold improvement in signal amplitudes. With this dDNP approach, novel insights can be gained into solvent accessible surfaces, ligand interactions, and complex protein geometries. Examples of applications to...
SABRE (Signal Amplification By Reversible Exchange) allows for rapid, affordable and repeated hyperpolarization of molecules directly in room temperature solutions. SABRE has many applications, ranging from biomedical to high precision measurements. To achieve the full potential, we investigated key steps in spin physics, chemistry, and engineering. Specifically, we (1) engineered membrane...