Encapsulated atomic hydrogen in silsesquioxane cages is a promising candidate for applications in emerging technologies like spin-based quantum computing, magnetic field sensing, and atomic clock devices. Compared to endohedral fullerenes (N@C$_{60}$ or P@C$_{60}$), which are currently the most used molecular spin systems for demonstrating single-quantum gates and quantum memories, atomic...
Nitrogen-vacancy color centers (NVs) in diamond can be measured at the single cite level even at room temperature, allowing to perform a variety of fundamental experiments.
Here the recent progress in controlling small nuclear spin ensembles at ambient conditions will be presented. A Dynamic Nuclear spin Polarization (DNP) method was developed to transfer the NV’s high (> 92 %) electron spin...
The ability to generate well-defined states with large electron spin polarization is useful for applications in molecular spintronics, high-energy physics and magnetic resonance spectroscopy. Pentacene-radical derivatives can rapidly form triplet excited states through enhanced intersystem crossing and under the right conditions this can in turn lead to polarization of the tethered radical...
Conventional reception of NMR signals relies on electrical amplification of the electromotive force caused by nuclear induction. In general, the signals cannot be transported without noise being added through the process of amplification before being acquired.
Here, we report a different approach that potentially leads to much less noise added through signal transduction. The idea is to...
Algorithmic cooling is a relatively new method to increase overall spin-polarization in NMR, which is based on manipulations of coupled slow-relaxing and fast-relaxing spins. The method enables increasing the magnetization of slow-relaxing spin by using the ability of fast-relaxing spins to pump entropy into the environment. Here, we suggest a new method to increase spin polarization by using...
Beta-detected NMR is up to 10 orders of magnitude more sensitive than conventional NMR, because it is based on the detection of beta-particles from hyperpolarized short-lived nuclei. Our project aims at applying it for the first time to liquid samples relevant in chemistry and biology, thus extending its use from nuclear structure and material science studies in solid environments.
Our...
Nuclear shielding is considered independent of the magnetic field strength when analysing NMR experiments. However, already in 1970, Ramsey proposed on theoretical grounds that this may not be valid for heavy nuclei. Here we present experimental evidence for the direct field dependence of shielding, using 59Co shielding in Co(acac)3 dissolved into chloroform as an...
We present our recent progress in implementing an improved readout scheme for the nitrogen-vacancy (NV) center's spin-state combining resonant excitation at low (4 Kelvin) temperature with spin-to-charge conversion. Resonant excitation exploits that the optical excitation spectrum at low temperature has sufficiently narrow linewidths[1,2] to selectively address the spin-sublevels. In...
Magnetic resonance (MR) is one of the most important techniques for characterizing compositions, structure and dynamics of molecules. Over the past several years, quantum sensing with Nitrogen-Vacancy (NV) center has opened a new door for magnetic resonance spectroscopy of a single molecule. In my talk, I will mainly introduce several new experimental results on both of methods and biology...